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Abstract 

ELVIS (Eigenvectors for Land Vehicle Image System) is a road-following system 
designed to drive the CMU Navlabs. It is based on ALVINN, the neural network 
road-following system built by Dean Pomerleau at CMU. ALVINN provided the 
motivation for creating ELVIS: although ALVINN is successful, it is not entirely 
clear why the system works. ELVIS is an attempt to more fully understand 
ALVINN and to determine whether it is possible to design a system that can rival 
ALVINN using the same input and output, but without using a neural network. 

Like ALVINN, ELVIS observes the road through a video camera and observes 
human steering response through encoders mounted on the steering column. 
After a few minutes of observing the human trainer, ELVIS can take control. 
ELVIS learns the eigenvectors of the image and steering training set via principal 
component analysis. These eigenvectors roughly correspond to the primary fea- 
tures of the image set and their correlations to steering. Road-following is then 
performed by projecting new images onto the previously calculated eigenspace. 
ELVIS architecture and experiments will be discussed as well as implications for 
eigenvector-based systems and how they compare with neural network-based 
systems. 
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1.0 Introduction 
Researchers at CMU have been working on autonomous driving systems for 
nearly a decade. One of the most successful robot road-following systems is 
ALVINN, a simulated neural network built by Dean Pomerleau at CMU. 
ALVINN uses a color video camera mounted above the passenger compartment 
of the vehicle to watch the road. A steering wheel encoder allows ALVINN to 
observe human steering. After observing the road and the human steering 
responses for approximately two minutes, ALVINN can operate the steering 
wheel to follow the road on its own. 

Unfortunately why ALVINN works has remained somewhat of a mystery. 
ALVINN has several components which contribute to its success: careful genera- 
tion of training image sets, image subsampling, color balancing, output represen- 
tation, and the neural network. One model of how the neural network in ALVINN 
works is that the first set of weights between the input and hidden layers learns a 
reduced representation of the training set representing the important image fea- 
tures. The weighted sums at the output calculate the steering based on those 
image features present in a new image. ELVIS (Eigenvectors for Land Vehicle 
Image System) seeks to verify this model: it calculates the eigenvectors of the 
training set which form an explicit reduced representation of that training set. 
Projection of a new image onto the eigenspace produces a steering output. ELVIS 
also attempts to answer the question of whether the neural network itself is the 
key to ALVINN's success, or whether it is possible to design a system that can 
rival ALVINN, using the same input and output, but without using a neural net- 
work. 

In its original design, ELVIS replaced ALVINN's neural network with an eigen- 
vector representation that uses the same inputs and outputs as ALVINN. In suc- 
cessive versions, alterations have been made to ELVIS to improve performance 
and to learn more about its capabilities and limitations. Most of the experiments 
have centered on improving the video preprocessing since evidence suggested 
that improvements in the preprocessing stage could significantly enhance the per- 
formance of ELVIS. 

In this paper we first introduce the components and structure of ELVIS. The train- 
ing and processing methods that ELVIS uses to drive the vehicle are then 
explained. Section three describes the various preprocessors used with ELVIS. We 
finish with a comparison of the video preprocessors and a discussion of the merits 
of ALVINN and ELVIS. We explain in what types of scenarios it is possible to 
replace a neural-network based system like ALVINN with an eigenvector system 
like ELVIS. 



2.0 ELVIS 

2.1 Common Components of ALVINN and ELVIS 
Both ALVINN and ELVIS are designed to interpret video images of roads and 
produce steering commands. The method each uses to calculate steering output 
given the same image is different, but the overall structure of the two systems is 
the same, and ELVIS was designed to use some of the ALVINN modules. A com- 
parative block diagram of the two systems is given below. 
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Figure 1. Block diagrams of ALVINN and ELVIS for both the training and driving phases of the 
process. Note that ELVIS replaces the ALVINN neural network with a principal component 
analysis in the training phase and with a projection module in the driving phase. 

Color Balancing 

In the ALVINN system, the three-band RGB color images produced by the camera 
are preprocessed to produce a single-band image. The color transformation is per- 
formed to reduce the amount of data, and more importantly, to enhance the image 
features important for road-following. Although numerous transformations of 
the color space have been tried with ELVIS, the color-balanced images produced 
through the ALVINN preprocessing work best in ELVIS as well. Each pixel is nor- 



malized to have a value between 0 and 1. The normalized value is given by: 

v =  [axB/255] + [(1-a) xB/(R + G + B)] 

where R,G, and B are the raw red, green, and blue values for a given pixel, and a 
is a weighting factor between 0 and 1. The partial normalization by intensity pro- 
vides some tolerance to lighting variation within a given image, helping to filter 
out variations caused by shadows. To heighten contrast within images and 
decrease variations in overall intensity between images, the normalized one-band 
pixel values are modified further based on the histogram of the pixel values. A 
fixed percentage (generally 10%) of the top and bottom values are set to 1 and 0, 
respectively, while the other values are stretched to span this range. Empirically, it 
has been determined that the blue band contains the most useful contrast for road 
following. 

Subsampling 

To reduce the computational expense of processing large images, the video pre- 
processing must reduce the dimensions of the 480 x 512 digitized camera image. 
The neural network in ALVINN uses a 30 x 32 input image layer, and this has 
been the resolution typically used for ELVIS as well. Rather than average each 
pixel region or randomly sample the image, the preprocessor compromises. A 
small percentage of the pixels within each region in the original image is ran- 
domly sampled and averaged to produce the reduced image pixels. This combi- 
nation of averaging and subsampling blurs the image slightly to reduce the effects 
of noise without eliminating important image variations or making road features 
unrecognizable. 

Output Representation 

The output for each system is a 50 element vector in which each element repre- 
sents the strength of votes for a particular steering direction. During training, the 
correct steering direction is represented by a gaussian set of votes within the out- 
put vector, centered at the actual steering direction. This output representation 
has several advantages over using a single-valued output to indicate steering 
direction. First, the single-valued output cannot represent both the network deci- 
sion and the network confidence in that decision. A single-valued output for a 
completely recognized scene indicating a shallow right turn might well be indis- 
tinguishable from the output for a partially recognized scene which calls for a 
hard right turn[7]. This is especially a problem for ALVINN which does not have 
an independent method of computing a confidence level. A second problem with 
a single-valued output representation is that it would not allow an ALVINN hid- 
den unit or an ELVIS eigenvector to vote for more than one steering direction[7]. 
It is important to allow an eigenvector to vote for multiple directions because an 
eigenvector does not necessarily correspond to one feature or one type of image. 
Finally, the gaussian output results in a robust, distributed system so that even if 
one output unit fails, it is still possible to drive. This would be especially impor- 



tant if either of these systems were implemented in hardware. 

Training Set Generation 

There are several pitfalls in the generation of training image sets. The first is bias: 
if the training used only images from left turns, the system would learn that 
always turning left minimizes output errors. Thus, the images selected must be 
balanced, including all ranges of steering positions with backgrounds or off-road 
areas that reasonably span the space of expected driving situations. Both ELVIS 
and ALVTNN will do poorly if trained on a paved road, and then expected to 
drive on a dirt road. The other problem in training is that, in general, the human 
trainer drives too well so the system is never shown how to recover from minor 
steering errors. The solution both systems use is to create derived training images 
from the actual images. A geometric transform is applied to the input image to 
rotate or shift it slightly as if the vehicle were slightly off the desired path. The 
steering angle is corrected correspondingly. This provides a much broader train- 
ing set for ALVINN and ELVIS. The geometric transforms for image and steering 
are more fully described by Pomerleau[6]. 

2.2 Training 
During training, ELVIS learns eigenvectors of the image and steering training set. 
The eigenvectors are a set of basis vectors that guarantee the best linear image 
reconstruction, on average, given limited representational power. These eigenvec- 
tors not only represent the principal features of the image set but also these fea- 
tures' correlations to steering (see Figure 4 for some example eigenvectors). Given 
a new image we use the eigenvectors to produce the best reconstruction of the 
image and its features. Since the eigenvectors also tell us how these features corre- 
late to the steering, this allows us to compute the proper steering position. The 
principal eigenvectors model large, common features which we assume are useful 
for driving. 

We represent each two-dimensional image with B color bands, R rows, and C col- 
umns, asann = BxRxC element one-dimensional vector. For training pur- 
poses, we add the steering vector elements to the end of the image vector. This 
image/steering vector combination is a training vector. The number of elements 
in each training vector is N = n + d where d is the number of steering units. For a 
monochrome 30 by 32 image with 50 output units, N is 1010. Given a set of M 
(typically M = 400) training vectors V^/V^-VM/ the average of the training set is 
defined by a = (l /M) £v4. By subtracting the average vector from each vector, we 
can obtain the difference vectors A; = v;-a. Given the A; we form the covariance 
matrix C = AA   where A = [A1; A2,...] . 



We illustrate the formation of the matrix A: 
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Figure 2. Forming the matrix A, the precursor to the covariance matrix 

The covariance matrix C is N by N which is very large, and it is computationally 
expensive to find its eigenvectors. There is a way to greatly reduce the amount of 
computation. Since there are only M images, there can be at most M independent 
eigenvectors. Since M is generally much less than N, it is advantageous to find the 
principal components of the M by M matrix U = A A and then convert them 
into the eigenvectors of matrix C rather than calculate them directly from C. To 
convert the eigenvectors of U to eigenvectors of C, we simply multiply each vector 
by A: if x is an eigenvector of U, it is simple to show that A • x is an eigenvector of 
C [4U9]: 

T 
Ux = Xx -» AUx = A.Xx -» AA Ax = AA,x -> C (Ax)   = X (Ax) 

It is important to note that the eigenvalue of the eigenvector will be the same in 
either U-space or C-space, so that the vectors will be found in the same order 
whether we use U or C. 

We then find ten to fifteen eigenvectors of the matrix u with the largest eigenval- 
ues. This is done by the power method. The vector U • x for an arbitrary vector x 
will tend to converge towards the eigenvector of U with the largest eigenvalue as 
n becomes large. In practice, sufficient convergence occurs for n between 5 and 50, 
depending on the eigenvalues of the eigenvector and its nearest competitors. By 
orthogonalizing the matrix U with respect to this eigenvector, we can repeat the 
process to obtain the orthogonal eigenvector with the next highest eigenvalue and 
so on. The orthogonalized matrix ui+1 is simply Uj - ?ix • x , where x is the eigen- 
vector and X is its eigenvalue. This orthogonalization process does not affect the 
other eigenvectors, but removes the dimension of the eigenspace that lies along x. 

Because we must change the original matrix U for each eigenvector we obtain, we 
gradually degrade the numerical accuracy of the matrix and therefore the accu- 
racy of each eigenvector is, in general, worse than the previous one found. The 



power method has the additional problem that it will be very slow to converge to 
an eigenvector if there is another with a similar eigenvalue. This will often result 
in the power method finding some linear combination of the two eigenvectors. 
For these reasons, the power method is usually not recommended for obtaining 
more than about three eigenvectors. For our purposes, however, the eigenvectors 
are well-behaved and finding the exact eigenvector is unimportant; obtaining 
eigenvectors that have slight numerical inaccuracies or that are actually a linear 
combination of two eigenvectors poses no problem for a few reasons. First, the 
information in an image is very distributed and mostly redundant, so small inac- 
curacies do not lead to any real loss of information. Secondly, since our input 
images themselves are noisy, there is no reason to attempt to eliminate inaccura- 
cies completely. Finally, obtaining linear combinations of eigenvectors is not a 
problem because we linearly recombine all the eigenvectors in order to steer. 
Empirical evidence supports these claims as well. The power method has the 
advantage that it is simple to implement, and faster than many other methods. 

Since the inception of ELVIS, the training phase speed has been improved greatly. 
With less-efficient methods, training ELVIS used to take on the order of 10 to 20 
minutes for a typical batch of 400 ALVINN pre-processed images. Presently, this 
takes only 2 minutes on a Sparc 10. Most of the time is spent on the large matrix 
multiplication. Since this matrix multiplication is linear with respect to the num- 
ber of elements in a training vector and quadratic with respect to the number of 
images, training with 3-band color images takes 6 minutes. 

2.3 Road-Following 
Once ELVIS finds the principal eigenvectors, ei, and the average training vector, 
a, of the roadspace, it can steer on its own. To drive, ELVIS takes a new image, x, 
performs the same preprocessing as in training, and then projects it onto the 
eigenspace formed by the principal eigenvectors (usually ten of them). To project 
the image onto the eigenspace, we perform the calculation: 

10 
v = a+ ^T  ((x-image (a)) • image (ej)) e{ 

i = 1 

where image(z) is simply the image portion of the composite vector z. In other 
words, the average image is subtracted from the new image. To calculate the pro- 
jection of this difference image onto the eigenspace, its dot product with the 
image portion of each of the eigenvectors is calculated. These dot product results 
become the coefficients of the eigenvectors in the summation. Then the average 
training vector is added to the summation result to complete the vector recon- 
struction. 

In this way, a composite vector, v, is formed which consists of both the recon- 
structed image and the steering vector. A single steering command is then com- 
puted from the steering subvector (the last 50 elements of v) by calculating the 



center of mass of the peak of activation surrounding the output unit with the 
highest activation level. This steering command is then sent to the vehicle control- 
ler module. Using the center of mass of the activation rather than the most active 
output unit allows for sub-unit steering resolution, thus improving driving accu- 
racy [6]. 

Besides knowing the proper steering direction, the system should also have a 
measure of the system's confidence in that calculation. A reliability estimate is 
important because it allows the system to disregard the new steering instruction if 
confidence is low, and it lets the user know that the system should be retrained if 
the average confidence becomes low. One simple way to measure reliability is to 
compute the sum-squared difference error between the image and its reconstruc- 
tion. This image reconstruction error measures how closely the reconstructed 
image resembles the original. If the error is low, then the new image must resem- 
ble some of the images in the ELVIS training set, and so confidence should be 
high. If the error is high, then the image does not match closely with training set 
images and so the system confidence in the steering direction should be low. 

Steering 
Vector 

Image 

Original Reconstruction 

Figure 3. Original image and steering vector and their reconstructions 

As can be seen from Figure 3, the reconstructed image tends to be smoother than 
the original image, generally capturing the essence of the geometry of the road 
while not reconstructing noise or fine details. The reconstructed steering vector 
also tends to be flattened. This can result in rather broad peaks. Wider peaks can 
cause steering errors of up to three units (out of 50), but these errors are manage- 
able. More difficult to handle are multiple-peaked responses. Although these 
occur infrequently, they can lead to drastically incorrect steering vectors if ELVIS 
chooses the wrong peak (ELVIS computes the center of the peak with the largest 
amplitude). Since road-following is a continuous process that does not require 
sudden changes in steering (except at intersections which ALVTNN and ELVIS are 



not equipped to handle), it would be possible to create a heuristic that would 
choose the peak that is closest to the present steering direction or place a thresh- 
old on the change in steering direction. This may help in avoiding the multiple 
peak problem. Of course, the independence of the individual results is one of the 
strengths of the system and removing this independence could introduce other 
problems. 

3.0 Experiments 
The video preprocessing is an important factor in ALVINN's success. ALVTNN 
would never learn to drive if the road or road features were indistinguishable 
from the rest of the image. The quality of the separation of road from non-road is 
the measure of success of the video preprocessor. As described below, tests using 
simulated data with ELVIS revealed that the ALVTNN video preprocessing did 
leave room for improvement. As an attempt to both improve ELVIS accuracy and 
further understand how and why ALVTNN works, we measured ELVIS perfor- 
mance using a variety of image types and video preprocessing parameters. All of 
the tests were performed on the same batch of images taken of a one-lane road 
near CMU. These images were often characterized by very harsh shadows and 
varying lighting conditions. This presented quite a challenge to the preprocessors. 

3.1 Simulated Data 
ELVIS was first tested on synthesized road images. The simulator produced 
monochrome road images with appropriate steering vectors calculated by geo- 
metric transformations. Pixels were perfectly classified; road pixels were white 
and non-road pixels were black. After subsampling, the images were still mostly 
white and black with some gray pixels along lane borders. By testing on perfectly 
classified data, we could show ELVIS concept viability and establish a baseline 
performance level against which we could judge the quality of various prepro- 
cessing techniques. ELVIS performance with the simulated data was good, with 
the standard deviation of the steering direction error being less than 0.8 steering 
units out of 50 (which corresponds to the difference between driving straight and 
on an arc of 350 m radius). After 2.5 m of travel, (the maximum distance travelled 
between images) this error leads to a displacement of 0.9 cm from the road center 
and an error of 0.41° in heading. Given real data, a perfect preprocessor would 
provide a clear separation between road and non-road such as that present in the 
simulated images. 

3.2 ALVINN Color-balanced Images 
Measuring ELVIS performance on image sets using the ALVINN color-balanced 
preprocessor, as described previously, provided the second baseline for our tests. 
Steering results were good, but not as accurate as with simulated data (see Table 1 
on page 12). The standard deviation of the steering direction was several times 
that found with simulated data, typically around 3.0 steering units out of 50 for 10 
eigenvectors (an error in curvature of 10.7 km4). The ALVINN system itself per- 



forms somewhat better — typically producing errors with a standard deviation of 
2.7 units out of 50. We expected to surpass the performance of the ALVINN color- 
balanced scheme by providing ELVIS with more information. 

3.3 Color Images 
Providing color images seemed an obvious first step to boost ELVIS performance. 
We hypothesized that the use of 3-band color images would improve the accuracy 
of ELVIS by providing ELVIS with important cues to distinguish between road 
and off-road pixels. Color provides humans with many obvious cues for driving. 
Green grass and yellow and white lane markers contrast well with black asphalt. 
However, ELVIS performance declined when we replaced the ALVINN pre-pro- 
cessed images with sub-sampled RGB color images. The standard deviation in the 
steering error for color images was approximately twice as great as that for the 
ALVINN images (see Table 1 for ELVIS results with different preprocessors). His- 
togramming and normalization of the color images to reduce intensity variations 
between images, as done in ALVINN pre-processing, improved the results only 
slightly. Although reconstruction of the input images themselves was quite good, 
the reconstruction of the steering vectors was poor. Often broad peaks or multiple 
peaks occurred in the reconstructed steering vectors, causing large steering errors. 
Apparently, the RGB values were not well correlated with the steering values. We 
thought that perhaps ELVIS needed color to be provided in non-linear combina- 
tions which would better distinguish between road and non-road. 

3.4 Images in Intensity-Saturation-Hue (ISH) Space 
After the disappointing performance of ELVIS using color RGB images, we tried 
to train and test ELVIS with images in the ISH color space as defined by Ballard 
and Brown[l]. First, we trained and tested ELVIS on monochrome images repre- 
senting each of the intensity, saturation, and hue bands. ELVIS performed misera- 
bly with intensity images, far worse than with color images. Intensity was not a 
good feature for distinguishing road from non-road. Part of the problem was that 
image reconstruction in intensity space became a matter of shadow matching, 
which had no correlation to steering. Of course, poor performance of intensity rel- 
ative to color was expected since RGB values provide far more information than 
intensity. 

Saturation was a better cue, but still did not perform well. Road pixels tend to be 
less saturated than the green grass and yellow lane-marker pixels, so saturation 
preprocessed images tended to have very dark road regions and lighter regions 
for grassy areas. This resulted in good reconstruction of the image and steering 
vector for most inputs. ELVIS with saturation information failed horribly, how- 
ever, in the infrequent cases where the background was less saturated than the 
road. Brownish dirt on the side of the road which was less saturated could cause a 
color reversal in the saturation images: the road would be lighter than the back- 
ground rather than darker. Rather than adding eigenvectors with dark road sec- 
tions to the average image, good image representation in these cases required the 
multiplication of these eigenvectors with negative weights, resulting in a well- 
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reconstructed image but an inverted steering vector which would have steered 
the vehicle off the road. 

Calculating hue is an expensive operation requiring both a square root and an 
inverse trigonometric function. Hue is also a very noisy operation for low satura- 
tion pixels, which results in large variations on the road portions of the images. 
The noise led to large image reconstruction errors because the smooth eigenvec- 
tors were unable to reconstruct the noisy data. Despite these drawbacks, hue did 
provide the best information for driving of the three ISH bands. So, although the 
large image reconstruction errors indicated an unreliable steering vector, the 
steering reconstruction was reasonably accurate (though still not as good as the 
ALVINN preprocessing). Wraparound of hue values was ignored. 

Finally, 3-band ISH images and the three 2-band combinations were tested. The 2- 
band combination of saturation and hue images performed the best of the two 
and three band ISH band images. This indicates that intensity was a misleading 
cue in the presence of better information. 

3.5 The Ohta Color Space 
Neither RGB nor ISH information was able to segment the road pixels from the 
non-road pixels as reliably as ALVTNN's color-balancing scheme, and it was still 
unclear whether ELVIS could perform well without non-linear transformations of 
the color space. So we decided to try a color representation proposed by Yuichi 
Ohta[5]. Ohta performed trials to derive linear color features with large discrimi- 
nant power for segmenting outdoor color scenes. He found that all his test images 
could be segmented near-optimally if he used a transformed color space. The 3 
axes of this space were intensity, (R-B)/2, and (2G-R-B)/4. 

We trained and tested ELVIS using the images in the transformed color coordi- 
nates. Results were better than with either RGB or ISH information, although still 
worse than the ALVINN preprocessing. As in the ISH images, results were 
improved slightly when intensity information was dropped altogether. Addition- 
ally, performance was only slightly worse if we dropped the third band, (2G-R- 
B)/4, as well. (R-B)/2 seemed to segment the image fairly well because the road 
pixels tended to have more blue than red, while background pixels tended to be 
more reddish. This is similar to the way in which the ALVINN preprocessor and 
the Martin Marietta ALV road-follower function[8]. 

3.6 Increased Resolution 
The digitized images are 480 rows by 512 columns, and are normally reduced to 
30 by 32 by a combination of averaging and subsampling to smooth the image 
and to allow for computational tractability. This coarse resolution, however, often 
blurs lane markings, which provide important cues for driving along multi-lane 
roads. To improve ELVIS performance, especially for multi-lane roads, we per- 
formed similar pre-processing operations to produce higher resolution 60x64 
images in both ALVINN color-balanced and RGB modes. Performance decreased, 
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however, on the one-lane road and only improved slightly on the two-lane road. 
Despite the blurring in the low resolution images, the lane markings were still 
quite recognizable. Hence, the lack of improvement might have been predicted: 
for ELVIS to work, the steering vector must depend on large portions of the image 
and not just small features or details, as we will more fully explain later. 

3.7 Steering Vector Length 
Increasing the number of output steering units seemed to decrease the output 
accuracy. Doubling the steering vector length more than doubled the standard 
deviation of the steering error (measured in steering units). Why this is so is not 
entirely clear. It is possible that the greater the number of steering units, the 
greater the interference these output units cause in the principal component anal- 
ysis in terms of finding image features to rely upon. Since a longer steering vector 
also slows down training, a 50-unit length vector was used for all tests rather than 
the 100-unit vector used presently in ALVINN. Smaller vectors were also tried, 
but we felt that fringe effects might outweigh the slight advantage given by the 
shorter vectors. 

3.8 Dimensionally-Altered Images 
We should expect that some portions of our field of view are more important than 
others for the purpose of road-following. Looking behind us, to the side, or down 
at our feet is less helpful than looking straight ahead. Thus, it is important for a 
road-following system to know where to look. Positioning the camera and setting 
a reasonable field of view solves much of the problem, but not all of it. ALVINN 
can be taught to "ignore" portions of the image which are unimportant for driv- 
ing by assigning these areas low weights in the network, and it can learn to pay 
more attention to other areas of the image. ELVIS has no such ability. It treats the 
entire image equally in trying to minimize the image reconstruction error. 
ALVINN trains by explicitly minimizing the error between its output and the cor- 
rect output given an input image. ELVIS, on the other hand, minimizes the error 
between an image and its projection onto the eigenspace. It is then hoped, but not 
guaranteed, that good reconstruction of the image leads to construction of an 
appropriate steering vector. Thus, we might expect that if we could filter out the 
unimportant or possibly misleading portions of the images, that ELVIS would not 
only perform faster, but would also produce more accurate steering vectors. We 
would not expect to see improvement by ALVINN (except with respect to compu- 
tational speed) by removing unimportant portions of the images since it can 
ignore them. The ELVIS images were modified so that a given portion in each 
image was thrown out before training and testing. For the case of deleting the bot- 
tom quarter of each image, ELVIS steering accuracy improved. As predicted, 
elimination of the top portion of the image led to a dramatic decrease in perfor- 
mance, since this is the portion of the road that a driver uses most in determining 
the correct steering position. 
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3.9 Results 

TABLE 1. Steering Error Results on One-Lane Road for Various Video Preprocesso rs 

10 eigenvectors 15 eigenvectors 

Vector Average Standard Average Standard 
Preprocessing Method Size Error Deviation Error Deviation 

Simulated Data 1010 0.046 2.592 -0.036 2.091 

ALVINN (Color Balanced) 1010 -0.089 11.115 -0.238 8.843 

RGB, normalized 2930 -1.806 22.436 -0.786 18.233 

Intensity 1010 -0.455 39.417 2.624 35.940 

Saturation 1010 2.752 28.128 3.851 23.772 

Hue 1010 -0.523 11.879 -0.441 10.912 

Intensity, Saturation, Hue 2930 0.892 13.916 0.427 11.140 

Ohta Color Space 2930 -0.327 11.264 -0.178 10.158 

Ohta Space, bands 2 and 3 1970 -0.288 10.713 0.025 9.326 

ALVINN, high resolution 3890 -0.210 13.312 -0.647 11.115 

(60x64) 

ALVINN, 200 steering units 1160 -1.84 19.28 -0.675 13.906 

ALVINN, top 3/4 of each img 786 0.046 11.089 -0.583 9.397 

TABLE 2. Steering Error Results on Two-Lane Road for Various Video Preprocessors 

10 eigenvectors 15 eigenvectors 

Vector Average Standard Average Standard 
Preprocessing Method Size Error Deviation Error Deviation 

Simulated Data 1010 0.043 4.473 0.036 3.918 

ALVINN (Color Balanced) 1010 -0.789 6.389 -0.654 4.519 

RGB, normalized 2930 -3.154 10.322 -2.574 8.761 

Intensity 1010 -0.960 10.251 -0.946 8.899 

Saturation 1010 -0.896 8.811 -0.601 7.516 

Hue 1010 -0.626 6.439 -0.629 5.248 

Intensity, Saturation, Hue 2930 -0.661 8.700 -0.348 6.549 

Ohta Color Space 2930 -0.267 7.396 -0.380 5.881 

Ohta Space, bands 2 and 3 1970 -0.363 7.349 -0.388 4.782 

ALVINN, high resolution 3890 -0.359 6.457 -0.366 5.628 

(60 x 64) 

ALVINN, 200 steering units 1160 -0.555 6.909 -0.623 5.580 

ALVINN, top 3/4 of each img 786 -0.939 6.364 -0.740 4.395 

Note: The tables above give the average and standard deviation of the steering error, measured as the 
difference between the computed curvatures, and are in units of (km)"1. An error of 10 km" corre- 
sponds to a difference between driving straight and on an arc of 100 m radius. After 2.5 m of travel 
(the maximum distance travelled between images) this error leads to a displacement of 3.1 cm from 
the road center and an error of 1.43° in heading. 
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4.0 Discussion 

ALVINN's success provides no guarantee that ELVIS will work. First, since ELVIS 
is calculating linear functions of the inputs, it assumes that non-linear combina- 
tions are not required. Second, the eigenvector decomposition finds the best rep- 
resentation of the covariances among all the data. This will give the best linear 
reconstruction of the data, but will not necessarily find the best mapping from 
inputs to outputs. For a general data set, there is no reason to assume that globally 
similar inputs should produce globally similar outputs. It could be, for instance, 
that large portions of the input data are highly correlated, but that the outputs 
depend solely on a small portion of the input which has no relationship to the rest 
of the input. If the road-following problem had this kind of structure, we would 
expect better performance from the neural nets than from the eigenvectors, since 
the network training explicitly minimizes the error in the outputs. 

It is possible to reformulate ELVIS so that it minimizes output error. One way is to 
zero those portions of the covariance matrix that represent image-image or steer- 
ing-steering correlations. In this way, ELVIS learns only information that corre- 
lates steering output to image input. This has been tried, but steering results 
became worse rather than better. Evidently, the correlations between image pixels 
are important to the driving task in general, though they may not improve results 
on the training set. A second, and perhaps better, method would be to learn a 
least-squares mapping matrix of image input to steering output. This would cor- 
respond to learning a 50 by 960 matrix. This matrix might be further broken down 
into eigenvector components. Finding the least-squares mapping was performed 
and is described later in Section 5.0. 

The fact that ELVIS does usually calculate accurate steering responses, in spite of 
the above reservations, gives insight into the nature of the problem. First, linear 
mapping is sufficient. Steering direction is a smooth function, as represented by 
ALVINN and ELVIS. A different output representation, such as turn radius, may 
cause many more problems: near "straight ahead", the turning radius gets 
increasingly large, then jumps from positive infinity to negative infinity. Repre- 
senting such an output might require mechanisms beyond the linear calculations 
of ELVIS. Second, the inputs and output of ELVIS are correlated with each other. 
Small changes in input typically map into small changes in output; highly corre- 
lated input images have highly correlated output vectors[7]. This is a fortuitous 
characteristic of the road-following problem. It is also apparent that the output 
depends on large-scale features that involve much of the image; small details are 
unimportant. The fact that performance did not improve significantly with higher 
resolution images illustrates this as well. 

4.1 Comparing the Preprocessors 
The optimal preprocessor, measured in terms of ELVIS performance, is the one 
that manages to put all the relevant information into the least number of vector 
elements. This cuts down on both computation costs and on inaccuracies intro- 
duced by irrelevant or misleading information. The trade-off is that this optimal 
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preprocessor is often computationally expensive, less intuitive, and difficult to 
design. Obviously, the optimal preprocessor gives us the solution directly, and to 
design it, we must solve the problem. The video preprocessor should only seek to 
enhance or suppress certain image features, and not solve the problem itself. In 
general, we have thus settled for preprocessors that are non-optimal but that are 
fairly easy to calculate, intuitive, and perform satisfactorily. Although we cannot 
build the absolutely optimal preprocessor, it would be possible to build the opti- 
mal linear preprocessor or a multi-stage preprocessor. We could calculate the lin- 
ear color combination that would give us the best separation of road pixels from 
non-road pixels. Another possibility would be to use clustering techniques to pro- 
vide good separation of road from non-road. By first learning the common color 
clusters and assigning each cluster to the two superclusters road and non-road, 
the preprocessor could then achieve very good classification. This clustering tech- 
nique has, in fact, been used before for autonomous driving at CMU, but using 
five to twenty clusters and a model-based approach after the clustering has been 
performed[2],[3]. 

The ALVTNN preprocessor is relatively inexpensive to calculate and it performs 
the best of the preprocessors we tested. Unfortunately, it is rather unintuitive 
since it is based on empirical findings, and so we might have hoped we could 
design something more intuitive that would have worked as well. We found, 
however, that the other preprocessors simply could not separate road pixels from 
non-road pixels as reliably. 

Direct use of RGB data requires minimal preprocessor calculation and its success 
would have been theoretically satisfying, but individual red, green, and blue val- 
ues simply could not distinguish between road and non-road and did not corre- 
late well with the steering direction. Instead, an individual red, green, or blue 
value was more likely to indicate whether the pixel lay in a shadowed or non- 
shadowed than whether it lay in the road or off the road. Intensity presented the 
same problem, only heightened. Finally, saturation, which seemed an intuitive 
way to distinguish road from non-road, simply was not reliable enough. 

Hue is perhaps the most intuitive cue, since hue measures what humans tend to 
think of as color. But, as mentioned earlier, there are several drawbacks to using 
hue information. The first is that it is expensive to calculate. The second is that 
since hue is measured in radians, a hue of zero is the same as a hue of 2n, and care 
must be used in placing this discontinuity in an area of the color spectrum that is 
not commonly found in the road images since ELVIS can not recognize that these 
values are the same. Rather than artificially creating large diffences in hue space 
between points close together in RGB space because of the discontinuity, the sys- 
tem could use sin(hue) or cos(hue). This, however, would have the opposite prob- 
lem: that of creating small differences in sin(hue) space between points far apart 
in RGB space. The third problem with hue is that the calculations are very sensi- 
tive to small changes in pixel values for pixels with low saturation. Despite these 
problems, ELVIS performed well using hue information. 
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The Ohta color space, like the ALVINN color-balancing, was a less intuitive pre- 
processing method that gave better results than more traditional color schemes. 
The Ohta color space has the advantages that it requires almost no calculation in 
the preprocessing stage (which would be very useful if the system were to be 
implemented in hardware), and that since it is a linear transformation of the color 
space, the transformation is reversible. Since the Ohta color space is somewhat 
warped via the histogramming and normalization process, transformation back 
into RGB space does leave the colors somewhat stretched, but it still leaves the 
image features quite recognizable (see eigenvectors in Figure 6). The disadvan- 
tage of using the Ohta color scheme over the ALVINN scheme is that it requires 
nearly twice as much calculation during driving (if using two bands), and that 
accuracy is not quite as good. However, ELVIS results are still reasonably good 
when decreasing the computational costs by using only the red minus blue band 
of the Ohta space. 

Eliminating actual portions of the image was an additional step towards putting 
the relevant information into the least number of vector elements. It is a relatively 
simple matter to make some guess as to what portions of the image might be 
eliminated without degrading performance. To take this further, we may examine 
the picture of the covariance matrix itself, and remove the portions of the image 
which do not seem to correlate with steering. However, removing numerous 
pieces from each image complicates matters and eventually destroys the simplic- 
ity of the system. The example in Table 1 shows that performance was not signifi- 
cantly affected by eliminating the bottom quarter of each image. Reducing the 
size of the image also allows us to use more eigenvectors to improve performance 
without increasing computation. 

4.2 One-Lane Versus Two-Lane Results 
After ELVIS had been trained and tested with a variety of preprocessors on the 
same image set of the one-lane road on Flagstaff Hill, we tested the preprocessors 
on another set of images. Our second batch was of images taken of a two-lane 
road in Schenley Park. As the tables above show, all of the preprocessors per- 
formed well on the two-lane road images. In fact, ELVIS with the worst of the pre- 
processors on the two-lane road performed comparably to ELVIS with the best 
preprocessor on the one-lane road. There are probably several reasons for this. 

It is evident from examining the eigenvectors obtained from the two-lane road 
images (see Figure 5 and Figure 6) that the most important image feature is the 
yellow lane marker. Each of the eigenvectors is reasonably featureless except for 
bands near the location of the marker. The absence of harsh shadows on the two- 
lane road made it a reasonably simple matter to find lane markers by virtually 
any preprocessing method. The eigenvectors from the one-lane road image set 
show that the locations of road and non-road patches are the most important fea- 
tures. However, off-road areas in these images varied between grass, leaves, dirt, 
and trees, making them far more difficult to detect from color information than 
the lane markers in the two-lane image set which are very consistent in color. 
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Thus, the lane markers were more reliable as driving cues. Additionally, the two- 
lane road had shallower curves, so the images tended to be more consistent and 
the range of possible steering angles was decreased. 

5.0 Additional Linear Algebraic Methods 
ELVIS demonstrated that linear methods were sufficient to learn to drive autono- 
mously. In order to improve results, we formulated other linear algebraic meth- 
ods for solving the road-following problem. We implemented one such system 
which learned a transformation matrix as a direct mapping from input image to 
output steering vector. A system which learned a direct mapping was guaranteed 
to provide optimal performance in terms of least-squares error on the training set 
for a linear method and provided the most intuitive way of calculating the steer- 
ing given a new image. 

The system learned an m by n mapping matrix W, where m is the number of steer- 
ing units and n is the number of image elements, so that given an n x 1 image vec- 
tor x, we can compute the m x 1 steering vector y by simply computing 
W • x = y. There are multiple ways to calculate W. The problem can be solved as 
an iterative learning perceptron problem or directly as a batch process. For the 
batch process, consider the set of input images as an input matrix X and the set of 
output vectors as an output matrix Y, where each column of X and Y corresponds 
to a single input image and output steering pair. Then 

W»X = Y 

and we can compute W by finding the pseudoinverse of X. Since the system solves 
for m x n unknowns (the number of elements in w), we must have at least m x n 
equations to fully constrain the problem. Each input-output pair provides us with 
m equations (one for each steering unit), so we must have at least n input-output 
pairs. Since n was 960 for our ALVINN-preprocessed images, we used approxi- 
mately 2000 images to provide adequate constraints. We then computed a stan- 
dard least-squares fit for W by computing the pseudoinverse of X: 

w = Y«PSI(X) = Y»X
T
«[X»X

T 

Surprisingly, performance using this method was somewhat worse than ELVIS. 
Although it performed successfully on the training set (the standard deviation of 
the steering error was less than one unit), it did not perform well on the the test 
set data. There were several reasons why we expected the least-squares method to 
outperform ELVTS. Since we were training on far more images than with ELVIS 
and on twice as many as were needed to constrain the system, we expected that 
the least-squares fit should be able to generalize fairly well. The images in the two 
batches were rather similar, so that the same input-to-output mapping should 
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have worked for the test batch as well as the training batch. Finally, the least- 
squares fit was calculating and using nearly five times as many coefficients to 
achieve a good mapping from input to output as ELVIS did. Evidently, however, 
the least-squares fit of W computed on the training set was not as generalizable to 
other road data as the eigenvectors were. Most likely, the least-squares method 
was partially cueing off of noise. Besides giving worse performance, the least- 
squares method required many more images and far more computation both in 
training and at run-time. 

6.0 Conclusion 
ELVIS demonstrates that it is unnecessary to use a neural network to achieve a 
good direct mapping from image input to steering output, but we should not 
expect ELVIS to outperform ALVINN. While ELVIS principal component analysis 
minimizes the total error in the image reconstruction and steering vector, 
ALVINN directly minimizes the steering output alone. Since there are bound to 
be some small areas of the image which are not highly correlated with the steering 
output, ALVINN is able to produce better steering results. ALVINN has addi- 
tional advantages. First, although the speed of training of the two systems is 
roughly equal, ALVINN is faster at run-time. ALVINN requires approximately 
40% of the calculations of ELVIS (using 10 eigenvectors) to compute the steering 
output, though ELVIS could sacrifice accuracy by using just 4 eigenvectors to 
make the computational load equivalent to that of ALVINN[7]. Furthermore, 
since ALVINN training is an incremental rather than batch process, it is simple to 
train until performance is satisfactory, then stop. Although it would be possible to 
train ELVIS incrementally, training speed would decrease as more images were 
added. This makes it impractical to use much more than 400 images in training 
ELVIS. In contrast, it takes the same amount of time for ALVINN to update its 
neural network during training on the 400th image as it does on the first image. 

The primary advantage of ELVIS is its simplicity and lack of pre-defined struc- 
ture. We can use ELVIS with a variety of different eigenspaces with a different 
number of image elements in each. We must only perform the necessary prepro- 
cessing and send each image to the appropriate ELVIS module and eigenspace. It 
would be possible to then combine steering results from several ELVIS modules 
(given enough computational power). Perhaps the only other advantage of ELVIS 
is that the eigenvectors hold more symbolic meaning for the system user than the 
ALVINN hidden units. The eigenvectors give the user an understanding of what 
features are important for image reconstruction, and indirectly, important for 
driving. 

In considering the use of eigenvectors for other applications in the place of a neu- 
ral network, the scenario must be one in which the input and output are highly 
correlated. The output should depend on large features in the input, and the out- 
put representation should also be smooth so that a linear solution will be ade- 
quate. Eigenvectors might be very successful in an application where there are 
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several types of distributed, highly-correlated information, any of which could be 
input or output. The eigenspace could be used to function as an associative mem- 
ory. It is relatively trivial to recover a good approximation of 10% of an individual 
data entry (like the image/steering vector) if we have 90% of it (just the image) 
and the eigenvectors of the data set, no matter which portion of the data is miss- 
ing. Neural networks would not be as successful here because there is a well- 
structured concept of input and output. 

It makes no difference to ELVIS which portion of the vector is missing. For exam- 
ple, we could recover a portion of the image, given the rest of the image and the 
steering vector. We would calculate the dot products of the portions of the vector 
which are not missing with the corresponding pieces of the eigenvectors. This 
projects the vector onto the eigenspace, giving us an approximate reconstruction 
of all of the information. Turk and Pentland demonstrated with their eigenface 
work that it was possible to recover an approximation of a person's face (and rec- 
ognize it) even when a significant portion of it was occluded[9]. To obtain a good 
approximation, of course, it would be necessary to already have the data entry (a 
face in this case) in the database when the eigenspace was calculated. But even 
without any prior knowledge of the face, it might be possible to create a reason- 
able reconstruction since all faces are relatively similar. 

The concept of using eigenvectors to recover missing data could extend, however, 
to the case where there was not just image information, but multiple types of dis- 
tributed information, stored in a single entry or vector. How much missing infor- 
mation we could recover would depend on how similar individual entries were 
and the ratio of the number of eigenvectors to the total number of vector entries. 
A traditional neural network architecture, however, would demand that we know 
a priori which (and how much) information was being provided and which was 
missing; input and output are more restrictive concepts. 

In short, the neural network is well-suited to this task, but it is not the most criti- 
cal part of ALVINN. The network does not differ greatly from the eigen calcula- 
tions. Much of ALVINN's power comes from the robust representation, careful 
training set generation, and a good choice of video preprocessing. There is room 
for improvement in the video preprocessing, and it should be possible to provide 
a better separation of road and non-road. However, if a better segmentation is 
achieved, it might be more advantageous to approach the problem from a model- 
based method (such as in Crisman's SCARF and UNSCARF systems[2]) rather 
than using a neural network or eigenvector system. 
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Average Image and Eigenvectors for One-Lane Road 

Average Image Eigenvector 0(largest eigenvalue) 

Eigenvector 1 Eigenvector 2 

Eigenvector 3 Eigenvector 4(smallest eigenvalue) 

Figure 4. These eigenvectors were formed with the ALVINN color-balanced preprocessing method 
from a batch of images taken on Flagstaff Hill. The portion at the top of each image 
represents the steering vector. The lighter areas correspond to road regions. 
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Average Image and Eigenvectors for Two-Lane Road 
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Figure 5. These eigenvectors were formed with the ALVINN color-balanced preprocessing method 
from a batch of images taken on Schenley Drive. The bands towards the upper-left of each 
eigenvector represent the location of the lane markers. 
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Eigenvector 3 Eigenvector 4(smallest eigenvalue) 

Figure 6. These eigenvectors were formed with the Ohta color preprocessing method from a batch of 
images taken on Schenley Drive. The eigenvectors were then transformed back into RGB 
space for display purposes. Again, the bands representing the lane markers are the clearest 
image features. 
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